九九范本网 >工作计划

九年级物理教案7篇

没有教案的课堂是没有效率的,学会制定教案是很关键的,教案在书写的过程中,大家肯定要强调与时俱进,九九范本网小编今天就为您带来了九年级物理教案7篇,相信一定会对你有所帮助。

九年级物理教案7篇

九年级物理教案篇1

教学目标:

1、知识和技能

认识电流的磁效应。

知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。

理解电磁铁的特性和工作原理。

2、过程和方法

观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。

探究通电螺线管外部磁场的方向。

3、情感、态度、价值观

通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。

重、难点:

试验探究电流的磁效应的规律。

探究通电螺线管的磁场规律。

教学器材:

电脑平台、磁体、小磁针、电源、导线

教学课时:2时

教学过程:

一、前提测评:

1、静止后的磁针指南的一端叫 极,又叫 极,指北的一端叫 极,又叫 极。

2、同名磁极相互 ,异名磁极相互 ;磁极间的相互作用是通过 __________发生的。

3、磁场的方向是这样规定的:小磁针静止时 极所指的方向就是该点的 ;可以利用带箭头的曲线来描述磁场,这样的曲线叫做 。

4、使原来没有磁性的物体获得磁性的过程叫 。

二、导学达标:

引入课题:试验“猜一猜”

利用隐蔽的通电螺线管吸引小铁钉,让学生猜是什么物体?磁体对进入磁场的物体会发生作用,能否利用人工作用产生磁场、控制磁场?

进行新课:

1、电流的磁效应:

试验:53页图8.2-2示,结果

结论:通电导体的周围有磁场,磁场的方向跟电流的方向有关,这现象叫电流的磁效应。(这试验叫奥斯特试验)

思考:为什么手电筒、普通电线通电时吸引力好像不存在?……如何增强磁场?(做成螺线管,也叫线圈,如……开始的试验)

2、探究:通电螺线管的磁场

猜想:通电螺线管能否产生磁场,磁场可能与哪种磁体的相似?

(1)试验:54页图8.2-4示

(对比条形磁体)

结论:通电螺线管外部的磁场与 磁体的磁场相似。指出n极、s极

猜想:改变电流方向,磁场方向会不会变化?

(2)试验:54页图8.2-4示,但电流方向相反

结果:

结论:

指出图8.2-5中的n极、s极

讨论:能否利用一句话来概括这普遍性的规律?(参考55页提示)

(3)安培定则: 右手握螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那一端就是通电螺线管的n极。

练习:判断一些通电螺线管的n、s极

3、达标练习:课本后50页 “动手动脑学物理”

完成物理套餐中的本节内容。

小 结:根据板书,总结本节内容,明确重、难点。

课后活动:

完成物理套餐中课堂未完成的内容。

课本后练习。

教学后记:

三、电磁继电器 扬声器

教学目标:

1、知识和技能

了解电磁继电器和扬声器的结构和工作原理。

初步认识物理知识的实际应用。

2、过程和方法

通过阅读说明书,知道如何使用电磁继电器。

3、情感、态度、价值观

通过了解物理知识的实际应用,提高学习物理知识的兴趣。。

重、难点:

知道电磁继电器、扬声器的结构原理。

能分析有关的实际器材。

教学器材:

电脑平台、电磁继电器、灯泡、开关、电源、导线

教学课时:1时

教学过程:

九年级物理教案篇2

功和机械能

1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。

2.功的计算:功(w)等于力(f)跟物体在力的方向上通过的距离(s)的乘积。(功=力×距离)

3.功的公式:w=fs;单位:w→焦;f→牛顿;s→米。(1焦=1牛•米).

4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。

5.斜面:fl=gh斜面长是斜面高的几倍,推力就是物重的几分之一。(螺丝、盘山公路也是斜面)

6.机械效率:有用功跟总功的比值叫机械效率。

计算公式:p有/w=η

7.功率(p):单位时间(t)里完成的功(w),叫功率。

计算公式:单位:p→瓦特;w→焦;t→秒。(1瓦=1焦/秒。1千瓦=1000瓦)

浮力

1.浮力:一切浸入液体的物体,都受到液体对它竖直向上的力,这个力叫浮力。浮力方向总是竖直向上的。(物体在空气中也受到浮力)

2.物体沉浮条件:(开始是浸没在液体中)

方法一:(比浮力与物体重力大小)

(1)f浮g,上浮(3)f浮=g,悬浮或漂浮

方法二:(比物体与液体的密度大小)

ρ物ρ液,上浮(3)ρ物=ρ液,悬浮。(不会漂浮)

3.浮力产生的原因:浸在液体中的物体受到液体对它的向上和向下的压力差。

4.阿基米德原理:浸入液体里的物体受到向上的浮力,浮力大小等于它排开的液体受到的重力。(浸没在气体里的物体受到的浮力大小等于它排开气体受到的重力)

5.阿基米德原理公式:

6.计算浮力方法有:

(1)称量法:f浮=g—f,(g是物体受到重力,f是物体浸入液体中弹簧秤的读数)

(2)压力差法:f浮=f向上-f向下

(3)阿基米德原理:

(4)平衡法:f浮=g物(适合漂浮、悬浮)

7.浮力利用

(1)轮船:用密度大于水的材料做成空心,使它能排开更多的水。这就是制成轮船的道理。

(2)潜水艇:通过改变自身的重力来实现沉浮。

(3)气球和飞艇:充入密度小于空气的气体。

九年级物理教案篇3

一、导课。

1、复习提问:什么是机械效率?

热机是内能转化为机械能的机器,它跟所有机械一样,也有效率的问题。热机的产生和发展,推动了社会生产力的发展,促进人类文明的同时,也带来了环境污染的问题。这一节课,我们就来学习热机效率和环境的保护。

2、引入新课。

二、热机的能量损失。

1、提出问题,热机把燃料所蕴藏的化学能除了做有用功以外;同时还有哪些形式损失能量?

2、梳理总结,说出热机燃料释放能量的'主要走向。

三、热机效率。

1、引出热机效率的概念,提出自学要求,看课本相关内容画出热机效率

2、组织学生讨论:如何提高热机效率

四、环境保护。

1、热机给人类生活带来方便的同时,也带来什么问题,你觉得应怎样解决这些问题?

2、组织学生分组讨论、交流,并通过学生的展示予以肯定。

五、出示目标,学生小结。

六、巩固练习:

1、热机是把能转化为能的机械,在热机里,转变为的能量和燃料完全燃烧所释放的能量的比值称为热机效率。

2、如何提高热机效率,是减少能源消耗的重要问题,要提高热机效率,其主要途径是减少热机工作中的各种损失,其次是保证良好的,减少机械损失。

3、为节约能源,需提高热机的效率,下列措施中不能提高效率的是()

a、尽量使燃料充分燃烧。

b、尽量增加热机的工作时间。

c、尽量减少废气带走的热量。

d、尽量减少热机部件间的摩擦。

4、目前,社会上有一些旧的被淘汰的内燃机,从长远看,你认为有必要修一修再使用吗?说明原因。

九年级物理教案篇4

熔化与凝固

教学目标:

1、理解气态、固态和液态是物质存在的三种形态。

2、了解物质的固态和液态之间是可以转化的。

3、了解熔化、凝固的含义,了解晶体和非晶体的区别。

4、了解熔化曲线和凝固曲线的物理含义。

重、难点:

1、实验探究熔化、凝固的规律。

2、正确得出熔化、凝固的规律。

教学器材:

烧杯、水、温度计、海波、蜡、酒精灯。

教学课时:

2课时。

教学过程:

一、前提测评:

1、常用温度计的测温原理是什么?单位是什么?是怎样规定的?

2、温度计的使用方法。

3、体温计的测温方法。

二、导学达标:

引入课题:你知道物质有几种状态吗?这些状态可以转化?(学生回答、并举例,教师总结:)

1、物态变化:物质由一种状态变成另一种状态的过程。

熔化:物质由固态变成液态。 汽化:物质由液态变成气态 升华:物质由固态直接变成气态。

凝固:物质由液态变成固态。 液化:物质由气态变成液态。 凝华:物质由气态直接变成固态。

下面我们先学习……熔化与凝固

探究实验:课本75页,物质熔化时温度变化规律

提出问题 ……

猜想与假设 ……

设计试验 ……

进行试验 ……

数据记录:

时间/min 1 2 3 4 5 6 7 8 9。

海波的温度/℃。

蜡的温度/℃。

利用数据作出图像……然后说明凝固的过程,并在坐标中作出海波、蜡的凝固图像。

……学生探究、寻找规律,教师总结如下:

2、熔化和凝固:

固体 晶体: 在熔化时温度不变,晶体熔化的温度叫熔点

非晶体: 在熔化时温度不断上升,没有熔点。

晶体有一定的凝固温度,叫凝固点,非晶体没凝固点,同一晶体的熔点=凝固点。

不同晶体熔点不同(见课本熔点表),记住冰的熔点。

3、熔化时吸热,凝固时放热。

4、、介绍一些常见的熔化和凝固现象。

三、达标练习:

完成物理套餐中的本节内容。

小 结:

根据板书,总结本节内容,明确重、难点。

课后活动:

1、完成物理时习在线中课堂未完成的内容。2、课本后练习。

教学后记:

本节课的内容较多,且难度较大,节奏可以放慢些,可以给学生补充一些必要的知识:如:图形图像、物质状态等

九年级物理教案篇5

(一)功

1、如果一个物体受到力的作用,并在力的方向上发生了一段位移,我们就说这个力对物体做了功。

2、功的公式:w=fs。

3、做功的两个因素:

(1)作用在物体上的力

(2)物体在这个力的方向上移动的距离

4、比较做功的快慢

方法一:

做功相同,比时间。时间越短,做功越快。

方法二:

时间相同,比做功。做功越多,做功越快。

方法三:

做功和时间均不相同,比比值。

做功/时间的.值越大,做功越快。

(二)机械效率

1、机械效率是指机械在稳定运转时,机械的输出功(有用功量)与输入功(动力功量)的百分比。

2、增大机械效率

(1)有用功:w有用=gh(提升重物)=w总-w额=ηw总

(2)额外功:w额=w总-w有用=g动h(忽略轮轴摩擦的动滑轮、滑轮组)

(3)总功:w总=w有用+w额=fs

(三)机械能

1、机械能是动能与势能的总和,这里的势能分为重力势能和弹性势能。

2、决定动能的是质量与速度;决定重力势能的是质量和高度;决定弹性势能的是劲度系数与形变量。

3、动能:物体由于运动而具有的能量,称为物体的动能。

4、势能和动能的关系:动能增加量等于重力势能减少量。

九年级物理教案篇6

万有引力与航天

(一)知识网络

托勒密:地心说

人类对行 哥白尼:日心说

星运动规 开普勒 第一定律(轨道定律)

行星 第二定律(面积定律)

律的认识 第三定律(周期定律)

运动定律

万有引力定律的发现

万有引力定律的内容

万有引力定律 f=g

引力常数的测定

万有引力定律 称量地球质量m=

万有引力 的理论成就 m=

与航天 计算天体质量 r=r,m=

m=

人造地球卫星 m=

宇宙航行 g = m

mr

ma

第一宇宙速度7.9km/s

三个宇宙速度 第二宇宙速度11.2km/s

地三宇宙速度16.7km/s

宇宙航行的成就

(二)、重点内容讲解

计算重力加速度

1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。

g=g =6.67_ _ =9.8(m/ )=9.8n/kg

即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。

2 即算地球上空距地面h处的重力加速度g’。有万有引力定律可得:

g’= 又g= ,∴ = ,∴g’= g

3 计算任意天体表面的重力加速度g’。有万有引力定律得:

g’= (m’为星球质量,r’卫星球的半径),又g= ,

∴ = 。

星体运行的基本公式

在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。

1 向心力的六个基本公式,设中心天体的质量为m,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =g =ma=m =mr =mr =mr =m v。

2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。

向心力: =g ,f∝ ;

向心加速度:a=g , a∝ ;

线速度:v= ,v∝ ;

角速度: = , ∝ ;

周期:t=2 ,t∝ 。

3 v与 的关系。在r一定时,v=r ,v∝ ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、 也随之变化。根据,v∝ 和 ∝ ,这时v与 为非线性关系,而不是正比关系。

一个重要物理常量的意义

根据万有引力定律和牛顿第二定律可得:g =mr ∴ .这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。

估算中心天体的质量和密度

1 中心天体的质量,根据万有引力定律和向心力表达式可得:g =mr ,∴m=

2 中心天体的密度

方法一:中心天体的密度表达式ρ= ,v= (r为中心天体的半径),根据前面m的表达式可得:ρ= 。当r=r即行星或卫星沿中心天体表面运行时,ρ= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期t,就可简捷的估算出中心天体的平均密度。

方法二:由g= ,m= 进行估算,ρ= ,∴ρ=

(三)常考模型规律示例总结

1. 对万有引力定律的理解

(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。

(2)公式表示:f= 。

(3)引力常量g:①适用于任何两物体。

②意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。

③g的通常取值为g=6。67×10-11kg2。是英国物理学家卡文迪许用实验测得。

(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。

②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。

③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)

(5)万有引力具有以下三个特性:

①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。

②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。

③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。

?例1〗设地球的质量为m,地球的半径为r,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:

a、地球对物体的引力大于物体对地球的引力。

物体距地面的高度为h时,物体与地球间的万有引力为f= 。

物体放在地心处,因r=0,所受引力无穷大。

d、物体离地面的高度为r时,则引力为f=

?答案〗d

?总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。

(2)f= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。

(3)f= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项c的推理是错误的。

?变式训练1〗对于万有引力定律的数学表达式f= ,下列说法正确的是:

a、公式中g为引力常数,是人为规定的。

b、r趋近于零时,万有引力趋于无穷大。

c、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。

d、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。

?答案〗c

2. 计算中心天体的质量

解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。

式中m为中心天体的质量,sm为运动天体的质量,a为运动天体的向心加速度,ω为运动天体的角速度,t为运动天体的周期,r为运动天体的轨道半径.

(1)天体质量的估算

通过测量天体或卫星运行的周期t及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有 ,得

注意:用万有引力定律计算求得的质量m是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.

用上述方法求得了天体的质量m后,如果知道天体的半径r,利用天体的体积 ,进而还可求得天体的密度. 如果卫星在天体表面运行,则r=r,则上式可简化为

规律总结:

掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.

物体在天体表面受到的重力也等于万有引力.

注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.

(2)行星运行的速度、周期随轨道半径的变化规律

研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:

根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即

(3)利用万有引力定律发现海王星和冥王星

?例2〗已知月球绕地球运动周期t和轨道半径r,地球半径为r求(1)地球的质量?(2)地球的平均密度?

?思路分析〗

设月球质量为m,月球绕地球做匀速圆周运动,

则: ,

(2)地球平均密度为

答案: ;

总结:①已知运动天体周期t和轨道半径r,利用万有引力定律求中心天体的质量。

②求中心天体的密度时,求体积应用中心天体的半径r来计算。

?变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为r,探测器运行轨道在其表面上空高为h处,运行周期为t。

(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为t1,则行星平均密度为多少?

答案:(1) ; (2)

3. 地球的同步卫星(通讯卫星)

同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期t=24h,同步卫星又叫做通讯卫星。

同步卫星必定点于赤道正上方,且离地高度h,运行速率v是确定的。

设地球质量为 ,地球的半径为 ,卫星的质量为 ,根据牛顿第二定律

设地球表面的重力加速度 ,则

以上两式联立解得:

同步卫星距离地面的高度为

同步卫星的运行方向与地球自转方向相同

注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别

在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的r,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。

地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。

赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度

;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,

它的周期可以由下式求出:

求得 ,代入地球的半径r与质量,可求出地球近地卫星绕地球的运行周期t约为84min,此值远小于地球自转周期,而向心加速度 远大于自转时向心加速度。

已知地球的半径为r=6400km,地球表面附近的重力加速度 ,若发射一颗地球的同步卫星,使它在赤道上空运转,其高度和速度应为多大?

:设同步卫星的质量为m,离地面的高度的高度为h,速度为v,周期为t,地球的质量为m。同步卫星的周期等于地球自转的周期。

由①②两式得

又因为 ③

由①③两式得

:此题利用在地面上 和在轨道上 两式联立解题。

下面关于同步卫星的说法正确的是( )

a .同步卫星和地球自转同步,卫星的高度和速率都被确定

b .同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小

c .我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低

d .同步卫星的速率比我国发射的第一颗人造卫星的速率小

:acd

三、第七章机械能守恒定律

(一)、知识网络

(二)、重点内容讲解

1.机车起动的两种过程

一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力f=p/v随v增大,f减小.根据牛顿第二定律a=(f-f)/m=p/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至f=f'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=p/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(f-f)/m 即f=f时 保持vm匀速

f =p/v v达到vm

变加速直线运动 匀速直线运动

这一过程的v-t关系如图所示

车以恒定的加速度起动

由a=(f-f)/m知,当加速度a不变时,发动机牵引力f恒定,再由p=f•v知,f一定,发动机实际输出功p 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至f=f时,a=0 ,车速达到值vm= p额 /f,此后匀速运动

在p增至p额之前,车匀加速运动,其持续时间为

t0 = a= p额/f•a = p额/(ma+f’)a

(这个v0必定小于vm,它是车的功率增至p额之时的瞬时速度)计算时,先计算出f,f-f’=ma ,再求出v=p额/f,最后根据v=at求t

在p增至p额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.

匀加速直线运动 变加速直线运动

匀速直线运动 v

vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这一点在计算题目中极易出错.

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率p和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑.

2. 动能定理

内容:合力所做的功等于物体动能的变化

表达式:w合=ek2-ek1=Δe或w合= 2- 2 。其中ek2表示一个过程的末动能2,ek1表示这个过程的初动能2。

物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。

说明:动能定理的理解及应用要点

动能定理的计算式为标量式,v为相对与同一参考系的速度。

动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.

动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。

若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。

3.动能定理的应用

一个物体的动能变化Δek与合外力对物体所做的功w具有等量代换关系,若Δek›0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若Δek‹0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若Δek=0,表示合外力对物体所做的功等于零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有f、l、m、v、w、ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。

动能定理解题的基本思路

选取研究对象,明确它的运动过程。

分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。

明确物体在过程始末状态的动能ek1和ek2。

列出动能定理的方程w合=ek2-ek1,及其他必要的解题过程,进行求解。

4.应用机械能守恒定律的基本思路:

应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒条件,机械能就守恒。而且机械能守恒定律,只涉及物体第的初末状态的物理量,而不须分析中间过程的复杂变化,使处理问题得到简化,应用的基本思路如下:

选取研究对象-----物体系或物体。

根据研究对象所经右的物理过程,进行受力、做功分析,判断机械能是否守恒。

恰当地选取参考平面,确定对象在过程的初末状态时的机械能。(一般选地面或最低点为零势能面)

根据机械能守恒定律列方程,进行求解。

注意:(1)用机械能守恒定律做题,一定要按基本思路逐步分析求解。

(2)判断系统机械能是否守怛的另外一种方法是:若物体系中只有动能和势能的相互转化而无机械能与其它形式的能的转化,则物体系机械能守恒。

(三)常考模型规律示例总结

1. 机车起动的两种过程

(1)一恒定的功率起动

机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力f=p/v随v增大,f减小.根据牛顿第二定律a=(f-f)/m=p/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至f=f'时,a减小至零,此后速度不再增大,速度达到值而做匀速运动,做匀速直线运动的速度是

vm=p/f,下面是这个动态过程的简单方框图

速度 v 当a=0时

a =(f-f)/m 即f=f时 保持vm匀速

f =p/v v达到vm

变加速直线运动 匀速直线运动

(2)车以恒定的加速度起动

由a=(f-f)/m知,当加速度a不变时,发动机牵引力f恒定,再由p=f•v知,f一定,发动机实际输出功p 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至f=f时,a=0 ,车速达到值vm= p额 /f,此后匀速运动

在p增至p额之前,车匀加速运动,其持续时间为

t0 = a= p额/f•a = p额/(ma+f’)a

(这个v0必定小于vm,它是车的功率增至p额之时的瞬时速度)计算时,先计算出f,f-f’=ma ,再求出v=p额/f,最后根据v=at求t

在p增至p额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.

匀加速直线运动 变加速直线运动

匀速直线运动 v

这一过程的关系可由右图所示 vm

注意:中的仅是机车的牵引力,而非车辆所受的合力,这 v0

一点在计算题目中极易出错.

实际上,飞机’轮船’火车等交通工具的行驶速度受到自身发动机额定功率p和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑.

一汽车的额定功率为p0=100kw,质量为m=10×103,设阻力恒为车重的0..1倍,取

若汽车以额定功率起①所达到的速度vm②当速度v=1m/s时,汽车加速度为少?③加速度a=5m/s2时,汽车速度为多少?g=10m/s2

若汽车以的加速度a=0.5m/s2起动,求其匀加速运动的最长时间?

①汽车以额定功率起动,达到速度时,阻力与牵引力相等,依题,所以 vm=f=f=0.1mg=10m/s

②汽车速度v1=1m/s时,汽车牵引力为f1

f1=v1==1×105n

汽车加速度为 a1

a1=(f1-0.1mg)/m=90m/s2

③汽车加速度a2=5m/s2时,汽车牵引力为f2

f2-0.1mg=ma2 f2=6×104n

汽车速度v2=f2=1.67m/s

汽车匀加速起动时的牵引力为:

f=ma+f=ma+0.1mg =(10×103×0.5+10×103×10)n=1.5×104n

达到额定功率时的速度为:vt=p额/f=6.7m/s

vt即为匀加速运动的末速度,故做匀加速运动的最长时间为:

t=vt/a=6.7/0.5=13.3s

1 ①vm=10m/s ②a1=90m/s2 ③v2=1.67m/s

2. t=13.3s

⑴机车起动过程中,发动机的功率指牵引力的功率,发动机的额定功率指的是该机器正常工作时的输出功率,实际输出功率可在零和额定值之间取值.所以,汽车做匀加速运动的时间是受额定功率限制的.

⑵飞机、轮船、汽车等交通工具匀速行驶的速度受额定功率的限制,所以要提高速度,必须提高发动机的额定功率,这就是高速火车和汽车需要大功率发动机的原因.此外,要尽可能减小阻力.

⑶本题涉及两个速度:一个是以恒定功率起动的速度v1,另一个是匀加速运动的速度v2,事实上,汽车以匀加速起动的过程中,在匀加速运动后还可以做加速度减小的运动,由此可知,v2>v1

汽车发动机的额定功率为60kw,汽车质量为5t,运动中所受阻力的大小恒为车重的0.1倍.

若汽车以恒定功率启动,汽车所能达到的速度是多少?当汽车以5m/s时的加速度多大?

若汽车以恒定加速度0.5m/s2启动,则这一过程能维持多长时间?这一过程中发动机的牵引力做功多少?

(1)12m/s , 1.4m/s2 (2) 16s , 4.8×105j

2. 动能定理

内容和表达式

合外力所做的功等于物体动能的变化,即

w = ek2-ek1

动能定理的应用技巧

一个物体的动能变化Δek与合外力对物体所做的功w具有等量代换关系。若Δek>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若Δekt;0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若Δek=0,表示合外力对物体所做的功为零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。

动能定理中涉及的物理量有f、s、m、v、w、ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态的动能变化去考虑,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。当题给条件涉及力的位移,而不涉及加速度和时间时,用动能定理求解比用牛顿第二定律和运动学公式求解简便用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力做功过程、曲线运动等。

3. 机械能守恒

系统内各个物体若通过轻绳或轻弹簧连接,则各物体与轻弹簧或轻绳组成的系统机械能守恒。

我们可以从三个不同的角度认识机械能守恒定律:

从守恒的角度来看:过程中前后两状态的机械能相等,即e1=e2;

从转化的角度来看:动能的增加等于势能的减少或动能的减少等于势能的增加,△ek=-△ep

从转移的角度来看:a物体机械能的增加等于b物体机械能的减少△ea=-△eb

解题时究竟选取哪一个角度,应根据题意灵活选取,需注意的是:选用(1)式时,必须规定零势能参考面,而选用(2)式和(3)式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量。

?例2〗如图所示,一轻弹簧固定于o点,另一端系一重物,将重物从与悬点在同一水平面且弹簧保持原长的a点无初速度地释放,让它自由摆下,不计空气阻力,在重物由a点向最低点的过程中,正确的说法有:

a、重物的重力势能减少。 b、重物的机械能减少。

c、重物的动能增加,增加的动能等于重物重力势能的减少量。

d、重物和轻弹簧组成的每每机械能守恒。

?答案〗abd

九年级物理教案篇7

1、比热容的概念:单位质量的某种物质温度升高(或者降低)1℃吸收(或者放出)的热量叫做这种物质的比热容,简称比热。用符号c表示比热容。

2、比热容的单位:在国际单位制中,比热容的单位是焦每千克摄氏度,符号是j/(kg?℃)。

3、比热容的物理意义

(1)比热容是通过比较单位质量的某种物质温度升高1℃时吸收的热量,用来表示各种物质的不同性质。

(2)水的比热容是4.2×103j/(kg?℃)。它的物理意义是:1千克水温度升高(或降低)1℃,吸收(或放出)的热量是4.2×103j。

4、比热容

(1)比热容是物质的一种特性,各种物质都有自己的比热。

(2)从比热表中还可以看出,各物质中,水的比热容。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响,很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温度升高的慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。

(3)水比热容大的特点,在生产生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖。

5、说明

(1)比热容是物质的特性之一,所以某种物质的比热不会因为物质吸收或放出热量的多少而改变,也不会因为质量的多少或温度变化的多少而改变。

(2)同种物质在同一状态下,比热是一个不变的定值。

(3)物质的状态改变了,比热容随之改变。如水变成冰。

(4)不同物质的比热容一般不同。

6、热量的计算:q=cmΔt。式中,Δt叫做温度的变化量。它等于热传递过程中末温度与初温度之差。

注意:①物体温度升高到(或降低到)与温度升高了(或降低了)的意义是不相同的。比如:水温度从lo℃升高到30℃,温度的变化量是Δt==30℃-lo℃=2o℃,物体温度升高了20℃,温度的变化量Δt=20℃。②热量q不能理解为物体在末温度时的热量与初温度时的热量之差。因为计算物体在某一温度下所具有的热量是没有意义的。正确的理解是热量q是末温度时的物体的内能与初温度时物体的内能之差。

会计实习心得体会最新模板相关文章:

九年级下学期政治工作计划5篇

九年级学期末班主任工作总结5篇

九年级班务工作计划5篇

八年级物理组工作计划5篇

九年级下册英语工作总结6篇

九年级上工作计划通用5篇

九年级数学下学期教学工作总结5篇

九年级班工作计划5篇

部编九年级语文上册教学计划6篇

初中九年级班主任工作总结5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    33442

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。