通过对工作中问题的详细分析,我们能进一步保证教学反思的质量,为了更好的反应出教学活动的成果,应该及时写好相关的教学反思,以下是九九范本网小编精心为您推荐的反比例的教学反思6篇,供大家参考。
反比例的教学反思篇1
本节复习课,目的是通过整理复习,使学生对正比例和反比例的知识有一个全面的认识,使所学知识结构化,系统化。由于学生已是高年级,应该能够自主对知识进行整理,形成系统,因此在整理与回顾时我尽量放手,给学生充足的时间,让学生将本单元所学内容进行回顾整理,再深入各学习小组巡回指导,适当进行点拨。在这个过程中,我为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
从前几次学生的作业和考试情况来看,学生在用比例来解决问题的时候,有部分学生之所以没有完全掌握还是没有理解正、反比例的判断,所以我在复习正、反比例的应用的时候应注重数量关系的分析,并且在分析的过程中注重培养学生对生活经验加以深化和理解。通过本节课的复习,使学生再次掌握了正比例和反比例的概念,并使学生再一次的经历将一些实际问题抽象成代数问题的过程,进一步体会事物之间的联系和区别。在练习题的设计中我注重联系学生的生活实际,尽量选择离学生的生活接近的例子,培养学生在实际中学数学,用数学的兴趣
反比例的教学反思篇2
课堂教学是对学生进行思想品德教育的最有利时机,数学教材本身也蕴含着丰富的思想教育内容。我在教学时,经常结合学生的实际,采用灵活多样的方法,挖掘教材中的思想教育内容,有针对性的对学生进行思想品德教育。例如,出示小朋友读《安徒生童话选》例题时,我告诉学生在课余时间要多读书,增长知识;在练习李明骑自行车的练习时,提醒学生在上学放学路上要注意交通安全。简短、温馨的话语,温暖滋润了学生的心,拉近了师生的距离。
根据我自己的反思及听课老师的点评,本节课还需改进的地方有:
一、复习正比例的知识时分的过细,只复习正比例的意义就可以了,这样学生就可以根据正比例的意义判断正比例,为学习反比例奠定基础,还可以节约时间。
二、教师在课堂上要更加用心的倾听学生的发言,发现学生不规范的语言要及时提醒更改。例如有个别学生说:一个量扩大,另一个量增加,5乘以6,这些地方平时我都提醒学生注意,但是这节课没有及时纠正。
三、教师对学生的评价性语言要丰富,富有针对性,能调动学生的积极性,培养自信心。
四、反比例的知识是个难点,很抽象,学生往往硬套意义来判断,因此,讲解例题和练习时,要多设计图表型的题目,让学生形象的看到两个量的变化规律,直观的计算、比较出两个量的积一定,简明的理解反比例的意义。
五、数学课上,计算题、应用题和正、反比例的意义等内容主要靠学生分析、对比、概括、判断等,有时整节课枯燥无味,如何让这种课也能变得生动有趣,活泼精彩,还需要教师好好思考。
反比例的教学反思篇3
今天讲授了《反比例函数》一节新课,课后仔细回味,从教学设计到课堂教学,觉得有很多地方是值得反思的。
关于教学设计:
备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300,全程所用的时间t(h)随v(/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?
(2)时间t是速度v的函数吗?
设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:(其中均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、为何值时,为反比例函数?
2是的反比例函数,是的正比例函数,则与成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
反比例的教学反思篇4
用反比例解决实际问题是在学生已经学习了列方程解决实际问题和反比例的意义的基础上进行教学的,考虑到本班学生的实际情况,创设了学生熟悉的包装书本的情景后,直接提出要求:列方程解决问题,以避免发散思维造成时间分散,使得教学重点部分留给学生的数学活动时间不足。教学中先让学生独立思考,尝试解决问题,然后引导学生认真分析3个小问题:情境中有哪三个量?哪个量不变?包数和每包本数成什么比例?找出等量关系进而列出方程,从而使学生掌握用比例解决实际问题的基本方法。
本节课教学的收获是给学生充分思考的时间,在学生原有的认识的基础上,建立反比例意义与列方程解决实际问题间的联系,掌握用比例解决问题的一般步骤。
回顾本次教学,还有几方面有待改进和提高。
1.要注意培养学生的发散思维,鼓励学生用不同的方法解决问题,对学生的正确想法要及时肯定,保护学生的学习热情,让学生在解决问题中体验成功的喜悦。
2.增加正比例和反比例解决实际问题的对比,加深理解。
对这节课整体感觉还不错,但仍有少数学生作业中出现问题。学生不习惯用比例解决实际问题,有混淆正、反比例的现象,说明对题中的数量关系分析的不透彻,数量关系不会表达,需进一步反思。
反比例的教学反思篇5
第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……
成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:
红花的朵数和鸡蛋的个数成正比例吗?为什么?
(3)和一定,一个加数和另一个加数成正比例吗?为什么?
像上面的两个例子,有时很难判断。
给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。
给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。
但是上面的两例在特殊情况下又都像是成正比例的。
给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?
给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?
此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的比值一定就行了。
第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。
下午第二节课的“实际测量”我大体是按照教材的思路组织学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!
反比例的教学反思篇6
数学活动必须建立在学生认知发展水平和已有的知识经验基础之上,让学生亲历实际问题抽象成数学模型并解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度、价值观等方面得到进步和发展。在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后选择了让12位同学上台站一站,看“每行站几人,可以站几行?”让学生从活动中发现数学问题,从而引入学习内容和学习目标。这不仅激发了学生学习数学的兴趣,还激发了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自学能力。在学完例4后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例4的方法学习例5,接着对例4和例5进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再对例4和例5中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
会计实习心得体会最新模板相关文章: