九九范本网 >工作计划

人教版数学下册教案通用5篇

只有将教案制定好,我们才能更顺利的完成教学任务,写好一份教案,在往后的教学工作中起着很大的作用,九九范本网小编今天就为您带来了人教版数学下册教案通用5篇,相信一定会对你有所帮助。

人教版数学下册教案通用5篇

人教版数学下册教案篇1

第一单元

位置与方向

一、教学内容

学生在日常生活中对东、南、西、北等方向的知识已经积累了一些感性的经验,并通过第一学年的学习,已经会用上、下、左、右、前、后描述物体的相对位置。本单元在此基础上,使学生学习辨认东、南、西、北、东北、西北、东南和西南八个方向,并认识简单的路线图。

二、教学目标

1、通过现实的数学活动,培养学生辨认方向的意识,进一步发展空间观念。

2、结合具体情境,使学生认识东、南、西、北、东北、西北、东南和西南八个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。

3、使学生会看简单的路线图,并能描述行走的路线。

第一课时

认识东、南、西、北

教学内容

教材p2—3页例1,p6页练习一1、2题。

教学目标

1、知识与技能:结合具体情境,使学生认识东、南、西、北四个方向,培养学生辨认方向的意识,进一步发展空间观念。

2、过程与方法:能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向。

3、情感态度与价值观:培养学生良好的观察能力。

教学重难点

使学生认识东、南、西、北四个方向。

教具准备

东、南、西、北卡片、指南针 多媒体课件。

教学过程

一、目标导学

(一)导入新课

1、同学们,你们参加过升旗仪式吗?你们知道太阳是从什么位置升起

的吗?

2、揭示课题:东南西北

(二)展示目标(见教学目标1)

二、自主学习

(一)出示自学提纲

自学提纲(自学教材p2—3页内容)

1、早晨,太阳从哪边升起?

2、指一指哪边是东?教室的东边有什么?

3、东和西是相对的,那西边是哪边呢?教室的西边有什么?

4、组织全班活动,起立,指一指东和西。指左边练习表达:这边是北。指右边:这边是南。教室的北和南各有什么说一说?

(二)学生自学(学生对照自学提纲,自学教材p3页例1并完成自学 提纲问题,将不会的问题做标注)

(三)自学检测

1、图书馆在校园的东面,体育馆在校园的 面。教学楼在校园的面,大门在校园的 面。(参看课本第3页)

2、早晨当你面对着太阳,你的后面是( )面,你的右面是( )面,你的左面是( )面。

3、傍晚当你面对太阳时,你的后面是()面,你的左面是( )面,你的右面是( )面。

三、合作探究 (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

(分组方法:异质分组,汇报顺序: 3、4号先汇报,1、2号作补充,不同的方法说出每一步的思路)

2、教师有针对性地请不同方法的同学汇报自己的描述方法。

(1)组织全班活动,起立,指一指东和西。指左边练习表达:这边是北。指右边:这边是南。练习用教室的北和南各有什么说一说?

(2)在教室玩“走方向的游戏”。

(3)小组讨论:你怎样记住我们学校的东西南北方向?各个方向各有什么特点?

四、达标训练

1、早晨当你面对着太阳,你的后面是()面,你的右面是( )面,你的左面是( )面。

2、傍晚当你面对太阳时,你的'后面是()面,你的左面是( )面,你的右面是( )面。

3、晚上当你面对北极星,你的后面是()面,你的右面是( )面,你的左面是( )面。

4、填空。

五、堂清检测(1-3题必做,4题选做,5题思考题)

1、早晨,太阳从东方升起,我面向太阳,我的后面是(

)方,

左边是(

),右边是( )方。

2、傍晚,夕阳西下,我面向太阳,我的后面是( ),左边是()方,右边是( )方。

3、看图回答问题:

(1)上图中学校的北面是( ),学校的南面是( )。阳光超市的东面有( )、( )。

(2)少年宫的西面有( )、( )。

4、坐在自己的座位看看你的东南西北分别是哪位同学?

5、你家的大门是朝哪个方向?东南西北的邻居是谁?和邻居之间发生过什么有趣的故事说给大家听听?

(二)堂清反馈:

作业布置

教材p6页1—2题。

板书设计

认识东、南、西、北

人教版数学下册教案篇2

课前准备

教师准备 ppt课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

人教版数学下册教案篇3

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,ab=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版数学下册教案篇4

第一单元 位置与方向(一)

第一课时 认识东、南、西、北四个方向

2、导入新课

教学反思

第二单元 除数是一位数的除法

新知识点:

1、口算除法

(1)口算。

(2)估算。

2、笔算除法。

(1)基本的笔算除法

(2)除法的验算。

教学要求:

1、会口算一位数除整十、整百数、几百几十以及一位数除两位数的除法。

2、经历一位数除多位数的笔算过程,掌握一般的笔算方法,会用乘法验算除法。

3、能在具体的情境中进行除法估算,会表达估算的思路,形成估算的习惯。

4、感受数学与生活的联系,能够运用所学知识解决日常生活中的简单问题。

教学建议:

1、加强学生自主探究的意识,使学生重视对算理和计算规律的探求。

为了避免学生在不理解算理的情况下,机械地记忆口算过程,套用计算法则,本册教材对除数是一位数的除法,既没有注明一般的口算思路,也没有出示笔算除法的法则,二是充分调动已有的计算知识和经验,主动探索计算的算理和算法。

(1)激活学生已有的口算经验,使之顺利迁移到除数是一位数的口算除法中。

学生已有的与除法是一位数的口算除法相关联的口算经验:表内乘法和一位数乘整十、整百数的口算。这些口算经验是帮组学生解答除法是一位数的口算除法的基础。因此,教学时应该采取积极措施,激活学生已有的相关口算经验,唤起学生对已有知识的回忆,并将它灵活运用到除数是一位数的口算除法这样一个新的情景中。

(2)引导学生探索笔算除法的算理和计算规律,学会“先做什么—再做什么—接着做什么—最后做什么”的有序思考方法。教学时,应充分利用学生已掌握的除法口算经验,结合一定的直观操作活动,使学生养成一种有序的思考和操作习惯,从而自主概括出笔算除法的计算规律。

(3)引导学生用简洁的语言表述思考的过程。

引导学生用数学语言表达口算除法和笔算除法的过程,实际上是引导学生归纳、整理运算程序和运算规律的过程,它是计算活动过程中的提炼和升华。在这个过程中,教师应创造条件,给学生一个宽松的说话环境。首先,让学生在思考每个例题时,自言自语地、轻声的说出自己的思考过程。然后,让学生在小组中(或与同桌)说出自己的思考过程。最后,提供过程的范例。让说得好的学生在班上交流,或者教师根据多个学生的表述概括出班上学生的不同解题策略。通过有层次的说过程、说算理,自主归纳出口算或笔算除法的基本方法,同时,学会用简洁的语言表述自己的思考过程。

2、拓宽主题图的情景视野。

为了让学生在解决问题的情景中学习除法是一位数的除法,教材设计了学生熟悉的、丰富多彩的生活场景,从中引出需要用除法解决的若干问题。但是,这些素材还不能满足广大师生的要求。因此,实际教学时,老师应根据当地情况和学生的需求,将除法的学习与学生的生活环境、健康成长、交通、体育、娱乐、饮食和科普知识等联系起来,使枯燥乏味的除法计算融入人类的一切活动之中,提高学生学习的兴趣。

3、把估算放在与口算、笔算同等重要的地位。

“能结合具体情景进行估算,并解释估算的过程”是《课程标准》为学生提供的关于估算的学习目标。要落实这一目标,教学的过程中应注意:①充分认识估算在日常生活和工作中的广泛作用,认识到估算对学生数感的培养具有重要意义。②将估算、口算、笔算的数学结合起来。教学时,在具体问题情境中要注意引导学生将估算算法与其他算法结合起来应用,使学生真切感受不同计算方法的作业,感受估算的应用价值。③适当补充一些与学生生活密切联系的估算内容,加大估算应用的力度,培养学生的估算意识。

4、理解乘、除法之间的联系,提高学生简单的推理能力。

乘法和除法具有密切的联系,所以教学时,应注意引导学生从乘、除法之间的联系入手,将乘法运算的思维方法迁移到除法当中。如:教学60÷3( )时,可引导学生思考3×()=60。又如,在验算除法时,可依据乘、除法之间的互逆关系,引出用乘法验算除法的检验方法。这样,通过从矛盾的双方入手,引导学生揭示知识间的相互关系,使学生既掌握了除数是一位数的除法计算,又培养了学生的辩证唯物主义观点。

人教版数学下册教案篇5

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

会计实习心得体会最新模板相关文章:

数学初中教师工作总结通用7篇

9语文下册工作计划5篇

人教岗工作计划8篇

数学教师的个人工作总结范文通用8篇

乘车安全教案7篇

幼儿教育教案模板8篇

大班常规课教案8篇

租房合同简单版模板5篇

安全法制教育教案7篇

中学体育教案8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    15217

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。